Capturing Pragmatic Knowledge in Article Usage Prediction using LSTMs

نویسندگان

  • Jad Kabbara
  • Yulan Feng
  • Jackie Chi Kit Cheung
چکیده

We examine the potential of recurrent neural networks for handling pragmatic inferences involving complex contextual cues for the task of article usage prediction. We train and compare several variants of Long Short-Term Memory (LSTM) networks with an attention mechanism. Our model outperforms a previous state-of-the-art system, achieving up to 96.63% accuracy on the WSJ/PTB corpus. In addition, we perform a series of analyses to understand the impact of various model choices. We find that the gain in performance can be attributed to the ability of LSTMs to pick up on contextual cues, both local and further away in distance, and that the model is able to solve cases involving reasoning about coreference and synonymy. We also show how the attention mechanism contributes to the interpretability of the model’s effectiveness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knowledge management issues in fast growth SMEs

Purpose – The purpose of this paper is to present a study of knowledge management understanding and usage in small and medium knowledge-intensive enterprises. Design/methodology/approach – The study has taken an interpretative approach, using two knowledge-intensive South ISFAHAN (Iran) companies as case studies, both of which are characterized by the need to process and use knowledge on a dail...

متن کامل

Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies

The success of long short-term memory (LSTM) neural networks in language processing is typically attributed to their ability to capture long-distance statistical regularities. Linguistic regularities are often sensitive to syntactic structure; can such dependencies be captured by LSTMs, which do not have explicit structural representations? We begin addressing this question using number agreeme...

متن کامل

Towards Holistic Concept Representations: Embedding Relational Knowledge, Visual Attributes, and Distributional Word Semantics

Knowledge Graphs (KGs) effectively capture explicit relational knowledge about individual entities. However, visual attributes of those entities, like their shape and color and pragmatic aspects concerning their usage in natural language are not covered. Recent approaches encode such knowledge by learning latent representations (‘embeddings’) separately: In computer vision, visual object featur...

متن کامل

Deep Fusion LSTMs for Text Semantic Matching

Recently, there is rising interest in modelling the interactions of text pair with deep neural networks. In this paper, we propose a model of deep fusion LSTMs (DF-LSTMs) to model the strong interaction of text pair in a recursive matching way. Specifically, DF-LSTMs consist of two interdependent LSTMs, each of which models a sequence under the influence of another. We also use external memory ...

متن کامل

Explicit Instruction of Pragmatic Features: Its Impact on EFL Learners’ Knowledge of Hedging Devices in Academic Writing

Hedging academic claims has been recognized as one of integral pragmatic features of academic writing in which most EFL academic writers seem to face substantial problems. Explicit instruction has been proposed by some scholars as an effective approach to make EFL writers aware of the importance, different forms, and pragmatic functions of hedging devices some of which are polysemous and polypr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016